Radiation - Enhanced Aqueous Dissolution of Minerals

نویسندگان

  • Catherine A. Dukes
  • Raúl A. Baragiola
چکیده

Mineral samples of varying petrology, exposed to ion irradiation and subsequently immersed in water or exposed to a humid environment, show up to 60% depletion of specific surface atoms (Mg, Ca, K, and Na) — a depletion that is enhanced 26,000x compared to unirradiated surfaces. Surface depletions of irradiated minerals exposed to water were measured using X-ray photoelectron spectroscopy. Irradiations were performed with 4 keV Ar ions at fluences from 10 – 10 ion cm; samples were subsequently exposed to liquid water or humid air (35o C and 70% RH). Analyses were done before irradiation, after irradiation, and after exposure to water, allowing identification of changes in composition due solely to ion irradiation or combined with water exposure. Before water exposure, we observe no significant change in stoichiometry of the minerals for ion fluences <10 ions cm. We find incongruent depletion of 60% Mg for forsterite after exposure to humidity or three minutes (or more) water immersion. Augite undergoes reduction in the surface concentration of approximately 30% Mg, 40% Ca, and 55% Na after 1.9 x 10 Ar cm and immersion in HPLC water (pH: 6.8) for three minutes. Depth profiles of the irradiated, water exposed, minerals show that the depth of the depleted region is on the order of the ion range, ~15nm. In addition, preliminary results for albite, anorthoclase, and microcline in water show significant depletions of Na, Na and K, and K, respectively, from the mineral surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are grad...

متن کامل

The Role of Th-U Minerals in Assessing the Performance of Nuclear Waste Forms

Materials designed for nuclear waste disposal include a range of ceramics, glass ceramics and glass waste forms. Those with crystalline phases have provided the momentum for studies of minerals as a means to understand aspects of waste-form crystal chemistry, behaviour in aqueous systems and radiation damage over geological periods of time. Although the utility of natural analogue studies varie...

متن کامل

X-ray-driven reaction front dynamics at calcite-water interfaces.

The interface between minerals and aqueous solutions hosts globally important biogeochemical processes such as the growth and dissolution of carbonate minerals. Understanding such processes requires spatially and temporally resolved observations and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron x-...

متن کامل

Aluminum effect on dissolution and precipitation under hyperalkaline conditions: I. Liquid phase transformations.

Substantial amounts of self-boiling, Al-rich, hyperalkaline, and saline high-level waste fluids (HLWF) were deposited to the vadose zone at the Hanford Site, in Washington State. The objective of this study was to investigate the effects of similar fluids on the extent of dissolution and precipitation in the sediments. Metal- and glass-free systems were used to conduct batch experiments at 323 ...

متن کامل

Dissolution and crystallization rates of silicate minerals as a function of chemical affinity

A b s t r a c t The variation of silicate dissolution and crystallization rates with chemical affinity and solution composition can be quantified by the identification of the rate controlling precursor complex. The nature of this complex depends on the individual mineral structure. Specifically, the destruction of quartz and anorthite frameworks requires the breaking of only one type of structu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010